

LA-UR-21-27447

Approved for public release; distribution is unlimited.

Title: An Exploration of Ensemble GI software using LANL TA-66 sensor data

Author(s): Woodring, Jonathan Lee

Intended for: NA-221 Objective L Data Analytics Project Team Status Update

Issued: 2021-08-02 (rev.1)

An Exploration of Ensemble GI software using LANL TA-66 sensor data

Jon Woodring, LANL

July 29, 2021

LA-UR-21-27447

Outline

- Process of testing
- Smoothing Data
- Data gap (missing data) experiment, no resampling for sparsities
- Data gap (missing data) experiment, resampled data for dense time
- Conclusion

- Note about graph labels in the following slides:
 - x axis is always time
 - y axis is sensor value, except on discrete quantile bin plots, which are ordinal, i.e., the nth varying width quantile bin, not percentages

Process of testing

- Acquired Ensemble Grammar Induction (GI) software
- Tested with raw data using two years of time series
- Consulted with Constantin Brif.
- Smoothed data with Lasso
- Tested 3 Lasso'd sensor data sets in Ensemble GI GUI
- Data gap (missing data) experiment
 - TA-66 sensor data has missing values
 - Find data gaps as anomalies? sparse time
 - Find data gaps as anomalies? dense time (reinterpolating) the data in time

Smoothing data, i.e., reducing the data

- Lasso (Least Absolute Shrinkage and Selection Operator) + Lars (Least Angle Regression)
 - Piecewise linear regression; used before on similar types of MINOS sensor data
 - Lines can be sloped, depending on Lasso parameter tuning
- Manual symbol (label) generation from Lasso line segments
 - Run Lasso to generate at most 1 line segment per 1 minute: there may be fewer segments where one line spans multiple minutes, depending on goodness of fit
 - Generate one feature per minute as the average of the line over that minute
 - Preselect a number of symbols (n) and discretize each minute into n varying width quantile bins to make sensor values uniform (e.g., k bin discretizer)
- Ensemble GI settings to match
 - Piecewise aggregate approximation (PAA) = 1, no need to further linearize
 - Number of symbols = \mathbf{n} , no need to further discretize

1 minute Lasso segments and 20 bins over several days

Data Set 1

- Neutron detector
 - 25 million rows, two columns
 - 2 years at ~3 second intervals, single and double counts; example gaps in data
 - Smoothed to 1 minute intervals (20:1 in time), 20 discrete quantiles

Data Set 2

- Light Sensor 3 (light closest to neutron detector)
 - Raw 31 million rows, one column
 - 2 years of ~1 second intervals, light intensity; example gap(s) in data
 - Smoothed to 1 minute intervals (60:1 in time), 20 discrete quantiles

Data Set 3

- Light Sensor 6 (1 of 3 conference room sensors)
 - 35 million rows, one column
 - 2 years of 1 second intervals, light intensity; example gap(s) in data
 - Smoothed to 1 minute intervals (60:1 in time), 9 discrete quantiles

quantile bins

Experiment to find missing data, irregular time

- All of the TA-66 data streams do not have regularly sampled data
 - Data are sparse, in general, due to possible lag in sensor timing or events
 - Also, power outage, sensor/platform failure, data collection interrupted, etc.
 - Our data are time stamped for each sample: i.e., you cannot infer real time from sample position in the stream due to irregular sampling
- Curious to see if the anomaly detector could flag missing data
 - Tested sensor data as is with Ensemble GI: e.g., the streams were unevenly sampled in time, due to drops or just sensor time lag between samples
- Experiment 1: Would missing data be flagged without real time?
 - Would discontiuities in the value space (sensor readings) "a data drop blip" would be noticable without the time index/being densely, regularly sampled?

"Compressed in time": i.e., sparse real time vs. indexed time

sparse but timestamped

sparse, no timestamp

Running Ensemble GI with sparse time data

neutron singles

light sensor 3

light sensor 6

- 3 trials, 10 top anomalies, windows of 2 minutes, 15 minutes, 4 hours, 1 day
- Didn't seem to find anomalies to that matched time of gaps (User error?)

Rerun experiment with dense sampled in time data

- User error? Should have just smoothed and downsampled without uniform binning? Unanswered questions
- Experiment 2: Rerun, but with regular/evenly spaced samples in time
 - Same settings for Lasso and quantile binning
 - Same settings for Ensemble GI, including number of trials and top anomalies
 - Additional data for Ensemble GI to process, but no noticable addition in time
- Resample the data to have regular (even) sampling in time
 - Neutron data, reinterpolated to have exactly 1 sample / 3 seconds
 - Light sensor 3 and light sensor 6, interpolated to have exactly 1 sample / 1 second
 - Filled in gaps with samples, but those samples were anomalous wrt other data

Resampled comparison - sparse top, dense bottom

light sensor 6

Running Ensemble GI with dense time (regular Hz)

neutron singles

light sensor 3

light sensor 6

- 3 trials, 10 top anomalies, windows of 2 minutes, 15 minutes, 4 hours, 1 day
- With a time window of 1 day: Ensemble GI flagged the missing data, i.e., low rule density, i.e., anomalies, correspond to the missing data

Example timings of missing data compared to anomalies

Missing data (from, to)

- Neutron detector
 - 2018-08-13 12:10:43 to 2018-10-12 21:35:16
- Light sensor 3
 - 2018-08-12 23:59:59 to 2019-01-29 06:12:56

Anomalies (initial, length in minutes)

- Neutron detector
 - **-** 2018-08-14 12:11:00 41599

- Light sensor 3
 - **-** 2018-08-14 01:07:55 16270

Conclusion

- Infrastructure in place to test with TA-66 data and first high-level results
- Fast anomaly detection with 2 years of data at 1 minute (< 30 seconds)
- Future Work
 - More testing
 - Integrate Ensemble GI to generate features
 - Build results into feature matrix
 - What to do about sparse data, in general?
 - Correlate anomalies across sensors and time scales

